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Foam’s mechanical properties depend on its structures. Based on foam’s geometrical and topological char-
acteristics, we study the stable and metastable energies of two-dimensional foams with fixed areas. We
present a theoretical estimate of the ground state energy. We then treat the contributions from area poly-
dispersity, topological charges and boundary conditions as perturbations to the honeycomb structure which
has the absolute minimum energy, and obtain the equilibrium energies for arbitrary foam patterns. Using
a novel annealing techniques, we study the energies of ferro-fluid foams (FFF) during a relaxation from a
highly distorted state to nearly the global energy minimum. We also study energy relaxation in a Monte
Carlo model (the extended large-Q Potts model). Results from both FFF and simulations support our theory.

I INTRODUCTION

Fluid foams are a class of materials, including soap foams, emulsions, magnetic garnets, which consists of a collection of cells
tending to minimize their surface energy. In their various industrial applications, ranging from food and shaving cream to fire
fighting and oil recovery [1, 2, 3], foams’ mechanical properties play an important role but have not yet been well understood.
Foams support small stress like a solid, but flow like a fluid under sufficiently large shear, when the bubbles rearrange from
one metastable configuration to another. This solid-like to fluid like transition depends sensitively on the foam structure [4].
Hence understanding their structure is an important step towards predicting foam’s mechanical properties, e.g. the quasistatic
stress-strain relationship.

Due to the opaqueness of foams, the structure and the bubble-level processes in three-dimensional foams are difficult to
visualize. Thus two-dimensional foams, which are both experimentally and theoretically more tractable, becomes a good starting
point for building the foundation to bridge structure and properties. Contrary to the common believe that 2D foam structure is
well understood, we think our knowledge is far from complete. On the one hand, rigorous proof exists thus far only for a few most
simple cases such as perfectly ordered (honeycomb lattice [5]) or trivial (one, two and three bubbles) structures [6, 7, 8, 9, 10].
On the other hand, many empirical rules such as the Aboav-Weaire law have been gethered for real foams but lack explanations.
This paper bases on these well known results to study the energy of 2D foams, aiming at using a physicist’s insight to generalize
the understanding from simple cases to the realistic foams.

We start from the two-dimensional foams with fixed areas, i.e. foams are non-coarsening and incompressible [11]. Since the
macroscopic properties depend on the static structure, coarsening is only a secondary complication which can be included as
time dependent length scale. In general, the mechanical response of foams is of a timescale much shorter that that of coarsening,
e.g. in flowing foams, we can neglect the effects of coarsening. We also choose the neglect the compressibility of foams as its
not essential to fluid foams.

The structural characteristics of equilibrium foams are described by the Plateau’s rules. First, bubbles are in contact with one
another with no interstitial spaces, or bubbles are space-filling; second, bubble edges are circular arcs, which meet by 3 at2π/3
angles, hence by virtue of Euler’s theorem, the average number of bubble neighbors is six in foams without boundaries (infinite
or with periodic boundary conditions); third, the total curvature of the edges around a vertex is zero [10].

We use two model foams that satisfy the Plateau’s rules at equilibrium for our study. This paper is organized as follows.
The next session introduces the model foams: 2D ferrofluid foams and simulated foams with the extended large-Q Potts model.
Both foams have constant bubble areas thus eliminate the unwanted coarsening and enable us to study the stable and meta-stable
energies of 2D foams. Session III describes our theoretical description of foam energy and compares the theoretical predictions
with results from FFF and simulations. The last session summarizes our results and conjectures the implications and potential
applications of this work.

II MODEL FOAMS

The detailed description of FFF has appeared in [12]. An FFF is made from an immiscible mixture of an ionic magnetic fluid
(13% aqueous black magnetic liquid) and oil (87% white-spirit). The fluid mixture is trapped in the 1 mm space between two



parallel plexiglass plates. A homogeneous magnetic field of 9 kA/m perpendicular to the plates induces the cellular structure
and fixes the bubble edge thickness [12]. The magnetic dipolar interaction is much weaker than the surface tension, thus the
equilibrium foam pattern minimizes its surface energy. Figure 1a shows an equilibrium FFF picture with the dark lines formed
by the magnetic fluids. The bubbles are surrounded by the same oil as that filled the bubbles, corresponding to a free boundary
condition. The area distribution is fixed by nucleation conditions [12]. We tilt the plexiglas plates from the horizontal plane to
an angle of0.1◦, large bubbles drift upwards, small bubbles downwards, resulting in size-sorting [13]. Then we bring the plates
back to horizontal, bubbles slowly drift and settle. This procedure allows the bubbles to rearrange and explore the energy space
to find a lower energy configuration. The final stable pattern, Fig. 1a corresponds to an equilibrium energy state. Figure 1b
shows an FFF at different stages of relaxation.

FIG. 1: Ferrofluid foams with fixed areas: (a) Annealed FFF image withNb = 19 bubbles at the free boundary, topologi-
cal chargeQ = 25, area dispersityδA = 0.443Ā, and wall thicknesse = 0.126Ā1/2. (b) A. Freshly nucleated FFF with
highly distorted bubbles. B. After a relaxation which involved an avalanche of bubble rearrangements. C. After a few bubble
rearrangements induced by perturbing the foam. Scale bar in A indicates 10mm.

The other model we study is the simulated foam from the extended large-Q Potts model [4]. This model treats a 2D foam
on a 2D lattice by assigns an integer number to each lattice site. Domains of like numbers are bubbles with the bubble walls
described by the differences of bubble numbers. Each unmatching pair of numbers contributes to the bubble wall surface energy,
thus energy minimization through a Monte Carlo process results in minimal bubble perimeters. An area constraint keeps the
bubble areas constant. This model simulates foams in the dry limit. Figures 2a, 2b and 2c show respectively foam patterns with
periodic and fixed boundary conditions, and a polydispersed foam. Note that with fixed boundary conditions, bubble edges at
the boundaries are perpendicular to the boundaries.

III FOAM ENERGY

Such equilibrium configurations, Fig 1 and 2, are characterized by the topology and the geometry. The topology refers to
the list of neighbor relations, from which one can deduce the number of verticesni of bubblei or equivalently its “topological
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FIG. 2: Simulated foams with fixed areas: (a) A typical configuration of a polydispersed foam at equilibrium. The boundaries
are fixed in the vertical direction and periodic in the horizontal direction. The lattice is256 × 256 with 589 bubbles. Colors
encode the topological charges. The area dispersity isδA/Ā = 1.06. (b) An artificially constructed foams with equal areas
(δA/Ā = 0.4%) and periodic boundaries. A pentagon-heptagon-pentagon-heptagon cluster forms a topological quadrupole,
with the rest of the honeycomb lattice undisturbed. (c) Two dipoles (pentagon-heptagon pair) result in a curvature field in the
hexagons around them. (d) A foam illustrating the fix boundary conditions: a circular boundary in the center of a hexagon foam
induces a topological charge distribution in the bubbles touching the boundary, notice all the edges are perpendicular to the solid
boundary.
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charge”,qi = 6 − ni. And the geometry includes the angle and length of the edges and their algebraic curvatureκij (κij =
−κji > 0 wheni is convex). The energy of a foam withN bubbles is:

H = γ
N∑
i=0

Li = 2γ
∑
i≤j

`ij , (1)

whereγ is the line tension of bubble edges,Li is the perimeter of bubblei, `ij is the length of the edge between bubblesi andj,
i = 0 corresponds to the boundary. The factor 2 comes from that each edge is counted twice because it has two edge-fluid and
inner-fluid interfaces.

If all bubbles have equal areas, the minimal energy corresponds to the regular hexagonal lattice or the honeycomb structure [5].
In [14], we have estimated the ground energy,H0 by a perturbation around the ideal regular hexagon lattice:

H0 = Hh +He +Ht +Hb, (2)

where the labels stand respectively for “hexagon”, “epitaxy”, “topological defect”, and “boundary”.
The energyHh = L̄ =

√̄
A is exact for the regular hexagonal lattice. But when the areas are not equal,Hh =

(γ/2)
∑N
i=1 2

√
π6Ai is a good zeroth-order estimate forH0, whereπ6 = 2

√
3 is the isoperimetric constant for a regular

hexagon.
This estimate is tested with the model foams. We can prepare highly distorted FFF foams as initial conditions (Fig. 1b A)

where the edge lengths, bubble elongation and the topologies all have wide variations. To minimize their surface energy, the
distorted foams spontaneously undergo an avalanche of bubble rearrangements or “T1”’ processes, and reach the metastable
states with lower energy. We can then perturb the foams by perturbing the vertices using a magnetic pin [15], forcing the
energetically favorable T1 processes to occur and the bubbles to settle into configurations with even lower energy. Figure 3a
shows the energies during this relaxation process. For all five trials, the final energies of the relaxed foams are rather close to the
estimateHh (orH : Hh ≈ 1).

In simulations, by biasing the Monte Carlo probabilities in the direction of shear, we can apply shear to a foam [4]. Higher
shear rates result in more distorted foams thus higher energies. Using these deformed foams as initial conditions, we allow the
foams to relax towards equilibrium configurations. Figure 3 shows that the fully relaxed foams all have energies close to the
ground energy, regardless the initial energies. However, increasing the resolution of the data (inset of Fig. 3), we see that the
higher initial energies relax to lower final energies. This can be understood if we consider that the more distorted foams have
more chances during their relaxation to explore the energy landscape, and thus can reach lower energy states.
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FIG. 3: Ratio of energyH of a relaxed foam from simulations of one foam, to the energyHh of a collection of regular hexagons
with the same area distribution Energies of the relaxed foam from different initial energy. The inset shows the same data by
enlarging the scale ofy axis 20 times.

The first correction to the foam energy comes from the epitaxy of bubbles of different sizes. When two square with areas
Ai 6= Aj are in contact, the edge they share must have a length betweenLi =

√
Ai andLj =

√
Aj . In fact, to minimize the

perimeter while keeping the areas the same, the optimal length for the edge they share must beL =
√
LiLj . The resulting
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energy cost due to the lattice mismatch, i.e. the strain energy, is proportional toγ[(Li − Lj)/(Li + Lj)]2 [16]. This result
holds for a square or rectangular lattice. We now generalize the result to arbitrary configurations with small area differences, the
optimal edges beingLij ≡

√
LiLj with Li ≡ πnAi, whereπn is the isoperimetric constant for a polygon of sidesn. The energy

contribution isHe = γ
∑
ij [(Li−Lj)/(Li+Lj)]2. In a macroscopic description this becomes∼ γ

∫
d2~r(L/A)(~∇A/A)2, with

an additional term∼ n̂ · ~∇ (~∇A · n̂) coupling the area repartition with the local orientationn̂ of the (now distorted) hexagonal
lattice. For an interface between two hexagonal lattices, these two terms respectively provide a line tension and a spontaneous
curvature. ThusHe requires a sorting of bubbles according to their size to lower the energy. In a foam with free boundaries,
larger bubbles tend to sort outwards, as shown in Fig 1a, where bubbles are radially sorted according to their sizes, larger bubbles
in the outer region.

The optimal length between bubblei, j of areasAi andAj is Lij corresponds to configurations with an equilibrium energy.
The difference of actually length̀ij thus indicates the distance of the actually configuration from the equilibrium. During a
relaxation,̀ ij should relax towardsLij if our conjecture is correct. We test this conjecture by measuring`ij/Lij in both FFF
and simulated foams.

Figure 4a shows the dependence of the standard deviationδ`ij/Lij as a function of the energies of FFF during the same
relaxations as in Fig 3a. The foam energy relaxes towardsHh progressively. The energies for the fully relaxed foams remain
slightly higher thanHh, because the bubbles cannot all become hexagons, supporting thatHh is the lower bound for foam
energy. The mean value of`ij/Lij is close to 1 (data not shown) with the standard deviation tend towards zeros as the foams
relax. The deviation of the real edge length` from Lij reflects local deviation from equilibrium. The more distorted the foam
is, the more edges would be away from the equilibrium value ofLij . Thus the same trend in bothH : Hb andδ`ij/Lij indicate
that during relaxation the foam relaxedgloballyandlocally towards equilibrium.

Figure 4b shows the histograms of`ij/Lij for a relaxation of the simulated foam at several relaxation times. The distribution
of `ij/Lij becomes narrower as the foam relaxes, and the average of the distribution shifts towards 1. In comparison with the
FFF data, Fig. 4c plots the standard deviation,δ`ij/Lij , the width of the distribution, during relaxations for the same foam as in
Fig. 3b as well as several other foams with different boundary conditions and area distributions. All foams show the same trend
in energy and the deviation, showing bothglobal andlocal equilibration, agreeing qualitatively with FFF results shown in Fig
4a.

The second correction to the energy of hexagons comes from topological charges. An isolated topological charge does not
cost energy by itself, but it creates a pressure gradient and hence a curvature field. This is evident in Fig. 2b and 2c. In Fig
2b, a topological quadrupole does not affect the rest of the honeycomb lattice, while in Fig 2c two pairs of dipoles deform their
neighboring bubbles and induce curved edges in the hexagons around them. The energy contribution from the curvature field is
the sum over all curved edges:

Ht ≈ 2γ
∑ `3ijκ

2
ij

24
. (3)

The summation involves the electrostatic-analogy calculation [14]. For a single topological charge (i.e. a defect or dislo-
cation), we find thatHt grows logarithmically with the size of the foam, as expected in analogy with the self-energy of a
single 2D electrostatic charge. Thus for a large foam, a single topological charge costs so much energy that it is unlikely to
exist isolated. Topological charges tend to aggregate. For two chargesq, q′ separated by a distancer � L, the energy is
Ht = −(qq′A/2πεeff ) ln(r/L). Two opposite charges−q,+q (e.g. a pentagon-heptagon pair) a distanced ∼ L apart have a
dipolar moment~p = q~d and create a dipolar potentialP (~r) = q~d · ~r/(2πεeffr2) which can in turn interact with another dipole
(Fig. 2b) to form a quadrupole, and so on. We can then apply the electrostatics analogy to calculate their energies. The potential
energy (pressure field) for a foam with multiple charges is simply the superposition of those for every single charges.

As real foams are neither infinite nor having periodic boundary conditions, we consider the energy contribution from the free
or fixed boundaries. The Gauss-Bonnet theorem [17] states that the chargedQ enclosed by a contour isQ = 6−v+ +v−, where
v+ andv− are the number of vertices pointing outwards and inwards, respectively. Apply it to the boundary of the foam, for
which v+ = 0 andv− = Nb, (except of course in the trivial case where there is a single bubble,Nb = 1 6= v− = 0), we find
that the total charge of a foam isQ = Nb + 6.

The energy contribution from the boundary conditions,Hb is a function of the number of bubbles at the boundary,Nb.
Periodic boundary conditions warrant that the total chargeQ = 0 andNb = 0, thus contribute no energy. For real foams, we
have found it more convenient to handle the “effective charge”q′ = q = 6− n for bubbles not touching the foam boundary, and
q′ = q − 1 = 5− n for bubbles at the foam boundary. Then the totalQ′ over a foam is 6, see Fig. 2b.

For a free foam, the pressure obeys a Poisson-type equation, the sources being the effective chargeq′, the boundary condition
for the pressure field beingP ≡ P0. This is a Dirichlet problem, thus it has a unique solution. The energyHb due to the
boundary itself can be calculated [14]; for largeN it writes:

Hb ∼ γ
NbL

6

(
2π
π6
− 1
)
. (4)
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Fixed boundary conditions (Fig. 2c) are more difficult to treat exactly. Bubble edges are perpendicular to the boundaries [18],
thus the geometry of the boundaries impose a curvature field adding to the curvature field of the foam [19].

IV CONCLUSION

In summary, aiming at bridging the microscopic structure of foams with their macroscopic mechanical responses, we have
chosen to study the energy landscape of foams. A detailed description of the energy landscape (free or potential) provides
both the static and the quasi-static information of the foams. We study the local and global equilibrium energies for two-
dimensional non-coarsening foams based on their geometries and topologies. We have used an analogy with crystals, treating
the foam energy by small perturbations around its ground state, the energy of honeycomb structure. This approach allows us to
separate the energy contributions from different sources: topology, area polydispersity, and boundaries, andab initio determine
the foam energy. We compare the theoretical conjectures with FFF experiments and Potts model simulations, both tools have
unique advantages that are beyond many other methods. FFF experiments can have global and local annealing, thus allowing
relaxation from highly distorted foams with high energy to completely relaxed foams with energy reaching the ground energy.
Potts model offers controlled polydispersity, large number of bubbles for good statistics. The theoretical analysis, combined
with the experiments and computer simulations, has given us the opportunity to go beyond description of foam phenomena and
gain physical insights.

We have demonstrated that the difference betweenH andHh assay quantitatively how far the foam is from its ground state.
The difference betweeǹij andLij reflects the local deviation from equilibrium, or the local deformation. UseLij as the
reference, we can then define locally for each edge the deformation as e.g.

ε =
`ij − Lij
Lij

. We can then measure directly from the foam images both the stress and strain tensor locally and derive from which the
stress-strain relationship. We are currently testing this idea with two-dimensional distorted quasi-static foams [20].

The topological contributionHt shows that a single topological charge costs such a high energy that it is unlikely to appear
isolated; two charges of opposite sign tend to get closer. This is enough to explain the origin of the correlations between bubbles,
i.e. Lewis and Aboav-Weaire laws [21]. Our estimate of the ground state energy also opens a new avenue for numerical andab
initio theoretical studies of energy stored in foams under external stress, and thus helps understand the quasistatic mechanical
response under shear, uniaxial compression or gravity field.

Our approach applies to all “perimeter minimizing” systems, including grain boundaries in metals, biphasic fluids and mag-
netic garnets. We anticipate that the exact calculations presented here might in the future provide a deeper understanding of solid
foams produced from their melt, and an archetype on which to build theories for more complex, non-computable heterogeneous
systems.
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